
CALIFORNIA DEPARTMENT OF CONSERVATION 
DIVISION OF MINES AND GEOLOGY

U.S. DEPARTMENT OF THE INTERIOR 
U.S. GEOLOGICAL SURVEY

DMG OPEN-FILE REPORT 96-08

USGS OPEN-FILE REPORT 96-706

PROBABILISTIC SEISMIC HAZARD
ASSESSMENT 

FOR THE STATE OF CALIFORNIA

1996

DEPARTMENT OF 
CONSERVATION

Division of 
Mines and Geology

THE RESOURCES AGENCY
DOUGLAS P. WHEELER 

SECRETARY FOR RESOURCES

STATE OF CALIFORNIA
PETE WILSON 
GOVERNOR

DEPARTMENT OF CONSERVATION
LAWRENCE J. GOLDZBAND 

DIRECTOR



DIVISION OF MINES AND GEOLOGY 
JAMES F. DAVIS, STATE GEOLOGIST

Copyright © 1996 by the California Department of Conservation, 
Division of Mines and Geology. All rights reserved. No part of this 
publication may be reproduced without written consent of the 
Division of Mines and Geology.

The Department of Conservation makes no warranties as to the 
suitability of this product for any particular purpose."



STATE OF CALIFORNIA - THE RESOURCES AGENCY__________________________________________PETE WILSON, Governor

DEPARTMENT OF CONSERVATION
DIVISION OF MINES AND GEOLOGY
HEADQUARTERS 
801 K Street, MS 12-30 
Sacramento, CA 95814-3530 
Phone: (916)445-1825 
FAX: (916)445-5718

DIVISION OF MINES AND GEOLOGY OPEN-FILE REPORT 96-08 
U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 96-706

PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR THE STATE OF 
CALIFORNIA. By Mark D. Petersen, William A. Bryant, Chris H. Cramer, Tianqing Cao 
and Michael S. Reichle of the California Department of Conservation, Division of Mines and 
Geology; and Arthur D. Frankel, James J. Lienkaemper, Patricia A. McCrory and David P. 
Schwartz of the U.S. Geological Survey. 1996. PRICE: $25.00

SUMMARY
This report documents a probabilistic seismic hazard assessment for the state of California 
and represents an extensive effort to obtain consensus within the scientific community 
regarding earthquake parameters that contribute to the seismic hazard. The parameters 
displayed in this report are not the work of any individual scientist, but denote the effort of 
many scientists, engineers, and public policy officials that participated in developing the 
statistical distributions used in the analysis. Consensus in the earth-science community is 
essential for developing useful public policy that may influence land-use planning, building 
regulation, insurance rate assessment, and emergency preparedness. This consensus is 
imperative because our results indicate that roughly three-fourths of the population of 
California live in counties that have significant hazard due to earthquake ground shaking.

The primary purpose of this report is to present the earthquake source information; a general 
outline of the methodology and equations used to generate the seismic hazard map; and the 
seismic hazard map for peak horizontal acceleration on a uniform site condition of firm rock 
(average shear wave velocity of about 760 m/s) at a hazard level of 10% probability of 
exceedance in 50 years. Independent geologic, geodetic, and historical damage data are also 
presented as well as a comparison of the seismic hazard for several populated regions across 
the state.

The seismic hazard map and model presented in this report indicate that the hazard is high in 
many regions across the state, especially within about 50 km of the San Andreas Fault 
System, the Eastern California Shear Zone faults, the western Transverse Ranges, and the 
Cascadia subduction zone. Earthquakes in populated regions have already caused 
considerable losses during the past 2 centuries that span California's recorded seismic 
history. The hazard map is consistent with this historical seismicity, the historical damage 
patterns, and with geologic information regarding the slip rate and pre-historic earthquakes.



Engineers, geologists, and public policymakers can use the probabilistic information in this 
report in structural design and land use planning to mitigate the effects of the hazard.
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INTRODUCTION

This report documents a probabilistic seismic hazard assessment for the state of California1 
and represents an extensive effort to obtain consensus within the scientific community 
regarding earthquake parameters that contribute to the seismic hazard. The parameters 
displayed in this report are not the work of any individual scientist, but denote the effort of 
many scientists, engineers, and public policy officials that participated in developing the 
statistical distributions used in the analysis. Consensus in the earth-science community is 
essential for developing useful public policy that may influence land-use planning, building 
regulation, insurance rate assessment, and emergency preparedness. This consensus is 
imperative because our results indicate that roughly three-fourths of the population of 
California live in counties that have significant hazard due to earthquake ground shaking.

The primary purpose of this report is to present the earthquake source information; a 
general outline of the methodology and equations used to generate the seismic hazard 
map; and the seismic hazard map for peak horizontal acceleration on a uniform site 
condition of firm rock (average shear wave velocity of about 760 m/s) at a hazard level of 
10% probability of exceedance in 50 years. Independent geologic, geodetic, and historical 
damage data are also presented as well as a comparison of the seismic hazard for several 
populated regions across the state. Further information regarding the hazard model, 
sensitivity studies, and uncertainty analyses may also be found in papers by Frankel
(1995), Frankel et al. (1996), Petersen et al. (1996a,b), Cao et al. (1996), Cramer et al.
(1996), Cramer and Petersen (1996), Working Group on Northern California Earthquake 
Potential (WGNCEP, 1996), McCrory (1996), and a text on probabilistic seismic hazard 
analysis by Reiter (1990).

We chose to describe the hazard using a probabilistic seismic hazard assessment that takes 
into account the recurrence rates of potential earthquakes on each fault and the potential 
ground motion that may result from each of those earthquakes. The hazard analysis 
incorporates both a) historical seismicity and b) geologic information within fault zones 
that display evidence of displacement during late Pleistocene and Holocene times.

a) Seismicity in California .
Seismic hazard in California is high in many areas, as manifested by the number of large 
earthquakes that have occurred during historic time (Figures 1 and 2). Many of these 
earthquakes occurred in a belt of seismicity located within about 50 km of the San 
Andreas Fault Zone. Large earthquakes with moment magnitude M £ 7 have ruptured on 
or near the San Andreas Fault Zone (Figures 1 and 2) in the 1812 Wrightwood

1 The analysis was completed by the California Department of Conservation, Division of Mines and 
Geology (DMG) and the U. S. Geological Survey (USGS) with assistance from the Southern California 
Earthquake Center. It represents our interpretation of the earthquake hazard parameters most accepted 
within the greater earth-science community.
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Figure 1. Index map showing names of major fault systems with slip rates greater than 
about 5 mm/yr and feature names referred to in the text



Figure 2. Seismicity M>6 in California between about 1800 and 1994 (DMG catalog).



earthquake, M-7-71/2; 1838 San Francisco peninsula earthquake, M ~ 7-71/2; 1857 Fort , 
Tejon earthquake, M ~ 7.9; 1868 Hayward earthquake, M ~ 7; 1906 San Francisco 
earthquake, M - 7.9; and the 1989 Loma Prieta earthquake, M 7.0. However, a number 
of moderate (M ^ 51/2) to large earthquakes have also occurred on faults situated well 
away from the San Andreas Fault (e.g., the 1872 Owens Valley earthquake, M~7.6; 1952 
Kern County earthquake, M - 7.5; 1971 San Fernando earthquake, M 6.7; 1992 Landers 
earthquake, M 7.4; and the 1994 Northridge earthquake, M 6.7). Moderate to large 
earthquakes have not only occurred on strike-slip faults associated with the broad San 
Andreas Fault System, but also along reverse faults that either rupture the surface (e.g., 
1971 San Fernando and 1952 Kern County earthquakes) or to some depth beneath the 
surface as "blind thrusts9' (e.g., 1983 Coalinga earthquake, M 6.5; 1987 Whittier Narrows 
earthquake, M 5.9; and the 1994 Northridge earthquake). The 1992 Petrolia earthquake 
(M 7.0) is thought to have occurred on the Cascadia subduction zone and demonstrates 
the potential hazard of this compressional zone (Figure 1). California has had an average 
of about one M^6 event every 2 to 3 years and losses from many of this century's large 
earthquakes have resulted in several billions of dollars in damage (e.g., 1906 San 
Francisco earthquake, 1933 Long Beach earthquake- M6.2,1971 San Fernando 
earthquake, 1989 Loma Prieta earthquake, and 1994 Northridge earthquake).

b) Faults in California
The earthquake catalog for California includes only earthquakes for approximately the 
past 200 years or so, whereas the return times for large earthquakes on many faults are at 
least an order of magnitude longer. Therefore, when it was available we have relied on 
paleoseismic data for faults in order to develop as complete an inventory of paleo- 
earthquakes as possible for our seismic source model. Rather than consider whether faults 
are "active" or "inactive," we have attempted to quantify the degree of activity of faults 
based on their reported slip rates and recurrence intervals. We have incorporated average 
recurrence times and displacement per event (when known) from paleoseismic 
investigations. Paleoseismic data for the majority of faults considered in this study, 
however, are restricted to slip-rate data of variable quality; recurrence intervals are rarely 
documented. Thus the majority of earthquake recurrence rates for faults has been derived 
from slip rate data. For this hazard assessment we have evaluated fault length, geometry, 
and slip rates for about 180 faults statewide with reported displacements during latest 
Pleistocene and Holocene times (Appendix A).

Several major fault systems accommodate high slip rates and significantly contribute to the 
hazard in California including: the San Andreas Fault, the Cascadia subduction zone, the 
Eastern California Shear Zone, and compressional faults associated with the western 
Transverse Ranges (Figures 1 and 3). Blind thrusts have recently been identified beneath 
the Los Angeles and San Fernando basins, the western Transverse Ranges, Santa Barbara 
Channel, and along the western flank of the Central Valley. In addition, several offshore 
faults have been identified and contribute significantly to the seismic hazard in coastal 
areas. Many late Quaternary faults are near a complex triple junction intersection of the 
Mendocino fracture zone, the San Andreas Fault, and the Cascadia subduction zone. 
Other significant faults are found in the eastern portion of California along a broad zone of



Figure 3a. Fault geometry applied in the source model. Weight of line is proportional to 
the slip rate. Faults and attributes are listed in Appendix A. Most fault names could not be 
shown, but may be found on maps such as Jennings (1994). Blind thrust faults are indicated 
by rectangles and are for the most part described in Dolan, et al. (1995) and WGNCEP 
(1996). Large rectangles located in the northeast portion of the state indicate area sources 
described in text. Faults shown: BT - Bartlett Springs; DV - Death Valley; GA - Garlock; 
GV- Great Valley blind thrusts; HL - Honey Lake; HM - Hat Creek - McArtmir-Mayfield; 
IP - Imperial; MA - Maacama; OV - Owens Valley; PM - Panamint Valley; PV - Palos 
Verdes; RN - Rinconada; SA - San Andreas; SG - San Gregorio; SJ - San Jacinto; SV - 
Surprise Valley; WE - Whittier-Elsinore.

Figure 3b. Detail of San Francisco Bay area from Figure 3a. Selected faults include: CA - 
Calaveras; CG - Concord-Green Valley; GL - Greenville; GV - Great Valley blind thrusts; 
HY - Hayward; OT - Ortigalita; PR - Point Reyes; QS - Quien Sabe; RC - Rodgers Creek; 
SA - San Andreas; SG - San Gregorio; SR - Sargent; WN - West Napa.

Figure 3c. Detail of Los Angeles area from Figure 3a. Selected faults include: CI - 
Channel Islands blind thrust; CT - Compton blind thrust; CU - Cucamonga; EP - Elysian 
Park blind thrust; GA - Garlock; MO - Montalvo-Oakridge blind thrust; NC - North Channel 
Slope blind thrust; NI - Newport-Inglewood; NR - Northridge blind thrust; OB - Oakridge 
blind thrust; PV - Palos Verdes; SA - San Andreas; SJ - San Jacinto; SM - Sierra Madre; SY 
- Santa Ynez; WE - Whittier-Elsinore.
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strike-slip and normal faults distributed across the Mojave Desert, the Owens Valley, 
eastern Nevada, and across the northeastern portion of the state (Eastern California Shear 
Zone in Figure 1). Additional faults with Quaternary offsets are scattered over almost 
every region of California.

METHODOLOGY

Development of the hazard model consists of three steps: a) delineating earthquake 
sources, b) defining the potential distribution of seismicity for each of these sources 
(magnitude frequency distributions), and c) calculating the potential ground motions from 
attenuation relations for all the model earthquakes.

a) Earthquake sources
For delineating the fault sources shown in Figure 3, we digitized the 1:750,000 scale fault 
activity map of Jennings (1994). Only a few points were digitized along faults of the 
Jennings map to approximate the location of each fault trace. The uncertainty in the 
location of the fault is approximately 1 to 2 kilometers. We digitized simplified fault 
traces from this map and calculated the length of each fault from these traces using 
Geographic Information System (GIS) analysis tools. For our uncertainty analysis, we 
assume a ±10% uncertainty in the length. This uncertainty reflects the range of values 
obtained by measuring the length of faults depicted on several different fault maps (Ziony 
and Yerkes, 1985, Ziony and Jones, 1989; and Jennings, 1994). When possible, the depth 
of the seismogenic rupture zone was obtained from the hypocentral locations of 
earthquakes surrounding the faults. We used the work of WGNGEP (1996), Hill et al. 
(1990), McCrory (1996), and Petersen and Wesnousky (1994) to assess the depth 
dimension of the seismogenic zone. For many of the faults with limited historical 
seismicity, the depths are simply an average of all earthquake depths located in the vicinity 
of the fault.

We conducted a comprehensive survey of the available slip rate information through 
literature searches and many discussions, meetings, and written correspondence with the 
authors of the fault studies to assign earthquake activity rates and slip rates along faults 
(Appendix A). As part of the survey, we evaluated published compilations of slip rates 
given by Bird and Rosenstock (1984), Clark et al. (1984), Wesnousky (1986), Ziony and 
Yerkes (1985), Thenhouse (personal communication), Petersen and Wesnousky, (1994), 
Petersen et al., (1996a), WGNCEP (1996) and McCrory (1996). We reviewed the original 
sources of slip rates whenever possible for constraints on the direction, amount, and 
timing of displacement. Mean slip rates and their uncertainties are based on these studies 
(see references in Appendices A and B). Slip rates are considered well constrained if the 
direction, amount, and timing of displacement have been demonstrated. Moderately 
constrained slip rates generally have significant uncertainty for one of these components. 
Poorly constrained slip rates have either significant uncertainty with respect to both 
amount and timing of displacement or else the reported slip rate is a long-term (late 
Cenozoic) average rate. Many of the faults in California are poorly to moderately 
constrained because they have not been studied sufficiently or because no available site has



been found that contains appropriate stratigraphic relationships and dateable material 
needed to infer details of the paleoseismic history.

Figures 3a-c show the faults that were incorporated into the source model and Appendix 
A indicates the associated length, slip rate, quality of slip rate (Rank), maximum 
magnitude (moment magnitude), characteristic earthquake rate and recurrence interval 
(R.L) for the maximum magnitude, down dip width of the seismogenic zone, the top and 
bottom of the rupture surface, as well as the rake, dip, and dip azimuth of the rupture 
surface, the endpoints of the fault or fault segment, and comments and references 
regarding the basis for these parameter values. The slip-rate table (Appendix A) reflects 
our "best estimate" of the mean and range of possible slip rates along a fault We consider 
the range of slip rates to encompass about 95% of the observations and represent 2 o in 
uncertainty. The range in slip rates is symmetrical about the mean for simplicity and 
because we found it difficult to assign more detailed uncertainty estimates based on sparse 
slip rate information. We assumed an uncertainty of ±2 km for the depth of the 
seismogenic zone. These values and quality assessments will be updated as new geologic 
and seismic investigations are completed.

In addition to fault studies, geodetic, magnetic, and earthquake source mechanism data 
provide insights constraining the stress and strain rates on faults in California. These 
strain measurements have not been incorporated explicitly in this model because of lack of 
uniform spatial coverage and availability. This strain data, however, provide independent 
constraints on the slip rate information independent of the geological data. The Working 
Group on California Earthquake Probabilities (WGCEP, 1995) indicated that the 
geodetically determined moment rates obtained from Global Positioning Satellite data are 
similar to the geologically determined moment rates from known faults in southern 
California. For this report we compared the modern plate tectonic rate from NUVELI 
(DeMets et al., 1990), obtained using global seismic, geodetic, and fault and fracture 
orientation information, with the slip rates that we have compiled from fault studies in 
California (Figure 4). For this comparison slip rate vectors are summed across profiles 
oriented nearly perpendicular to the Pacific-North American plate boundary. We find that 
the cumulative slip rates that we used are consistent with the NUVEL I model in 
amplitude (about 48 mm/yr) and generally consistent in azimuth. In southern California, 
however, there is a systematic discrepancy in slip rate direction between our model and the 
NUVEL I model. Part of this discrepancy may be related to the fact that the NUVEL I 
model does not take into account the bend in the southern San Andreas Fault and is only 
based on a concentric circle about an Euler pole. The sum of fault slip rates across the 
plate boundary is generally slightly less than the NUVEL I model predicts, but we assume 
that a relatively small amount of strain also occurs east of California.

b) Magnitude-frequency distributions
The annual number of earthquakes of various sizes that are assigned to each fault is based 
on the slip rate information and is defined using a combination of two statistical 
distributions: (1) the characteristic earthquake model that implies that a typical size of 
earthquake ruptures repeatedly along a particular segment of the fault (Schwartz and
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Coppersmith, 1984), and (2) the exponential model that implies that earthquakes on a 
given fault follow the Gutenberg-Richter relationship: n(/w) = lO*1*"* where n is the 
incremental number of earthquakes, a is the incremental number of earthquakes of m>0, b 
is the slope of the distribution, and m is moment magnitude (Richter, 1958). These two 
distributions have been discussed at length in the scientific literature and are both 
considered to be reasonable models either for specific faults or for larger areas of 
California. A combination of the two distributions is also thought to characterize the 
behavior of many fault systems. This composite model allows for more large earthquakes 
than predicted by the exponential distribution, and also for earthquakes of sizes different 
than the characteristic event.

The recurrence time of the characteristic earthquake is obtained using the methodology 
described in Wesnousky (1986):

_ \dwu ^ '

where M Q is the seismic moment of the characteristic earthquake and M$ is the rate that 
the fault accumulates moment. The rigidity or shear modulus of the crust is represented 
by n, and for this study is taken as 3.0 x 1011 dyne/cm2s. The value / represents the length 
of the fault, w is the downdip width (or depth) of the seismogenic zone, u is the slip rate 
for the fault, and d is the average displacement on the fault. The relation 1/T gives the 
rate of earthquakes on a fault of the characteristic size.

The exponential distribution is used to partition the moment rate of the fault into events 
between a minimum and maximum magnitude. The geologic moment rate can be related 
to the exponential distribution by the following relation:

"\i "li -I f\O+d

M* = Jn(m)M0dm - JlG^lO^0"^ -        [itf-** - 10(c-fr)ffl° ] (2)

where n (m) is the annual number of events of moment magnitude m, MO is the moment of 
each of those events, a is the incremental rate of earthquakes with magnitude m, b is the 
slope of the distribution, c and d are constants defined by Hanks and Kanamori (1979) as 
1.5 and 9.1, mu and mo are the upper and lower bound magnitude truncations of the 
magnitude-frequency distribution. Equation 2 is used to solve for the incremental a-value.

(3)1Q<* M Q(«-*»X _ jQ(c-fr)"io I

This formulation assumes that all the moment rate from a fault is released seismically by 
earthquakes between the upper and lower bound magnitudes.

We categorize the faults into two classes and apply different magnitude-frequency 
statistical distributions for each class. The class A faults generally have slip rates greater 
than 5 mm/yr and well constrained paleoseismic data (i.e., the San Andreas, San Jacinto,

11



Elsinore, Imperial, Hayward, and Rodgers Creek faults). The class B faults include all the 
other faults lacking paleoseismic data necessary to constrain the recurrence intervals of 
large events (Appendix A).

For class A faults we use characteristic earthquakes to describe the magnitude-frequency 
distribution along the faults. In addition to independent fault segment ruptures, we allow 
multiple contiguous segments to rupture together in larger events, comparable to large 
historical events on the San Andreas Fault System (Table 1). We use slip rate, 
displacement, and individual segment recurrence information provided by the WGCEP 
(1988,1990,1995) to account for multiple segment ruptures on the class A faults, except 
for the northernmost 1906 segment of the San Andreas Fault segment that is based on 
WGNCEP (1996). All the probabilities that we calculate incorporate a Poissonian model 
and do not consider the time since the last large earthquake.

The source model accounts for all large earthquakes including the 1857 and 1906 
earthquakes along the southern and northern San Andreas Fault, respectively. We assign 
the paleoseismically derived recurrence rate of earthquakes along the Carrizo and North 
Coast segments of the San Andreas Fault as the rate of the large multi-segment ruptures 
(similar to the 1857 and 1906 sized earthquakes). We assign the rate of the Coachella 
Valley segment to that of the the multi-segment earthquake that ruptures the southernmost 
San Andreas Fault south of the 1857 rupture (Table 1). We subtract the annual rupture 
rates assigned to the multi-segment rupture from each of the other individual segment 
rates (from WGCEP reports) to obtain the revised rates for individual segment ruptures 
along the San Andreas Fault This means that the Carrizo, North Coast, and Coachella 
segments are only allowed to rupture as large events and not hi individual segment 
ruptures while the other segments may rupture as an individual segment or hi conjunction 
with other contiguous segments hi a multi-segment rupture.

For the Hayward Fault, we allow both individual segments to rupture separately as well as 
together in a larger event, as defined by the WGCEP (1990). We allow only single 
segment ruptures on the San Jacinto and Elsinore faults as defined by WGCEP (1995) and 
the Rodgers Creek Fault as defined by WGCEP (1990), because the single segment 
rupture model yielded nearly the same hazard as the multiple segment rupture model hi 
southern California (Petersen et al., 1996a; Cramer et al., 1996).
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Table 1: Class A faults with both independent and multi-segment ruptures.

Fault segment

San Andreas: 1906 rupture
North coast
Peninsular
Santa Cruz

San Andreas: 1857 rupture
Parkfield
Chalome
Carrizo
Mojave

San Andreas: Southern
San Bernardino
Coachella

Hayward
Northern segment
Southern segment

Cascadia subduction zone
California segment

Magnitude

7.9
7.6
7.1
7.0

7.8
6.7
6.9
7.2
7.1

7.4
7.3
7.1

7.1
6.9
6.9

9.0
8.3

T independent 
segment recurrence

(yr), 1IT .

210/0.00476
138/0.00726
138/0.00726

22 / 0.04545
140/0.00714
206/0.00485
150/0.00667

146/0.00685
220/0.00454

167/0.00599
167/0.00599

T multi-segment 
recurrence (yr), 

1IT
210/0.00476

0/0
400/0.00250
400/0.00250

206/0.00485
25/0.04060
437 0.00229

0/0
550/0.00182

220/0.00454
433/0.00231

0/0

330/0.00299
330/0.00299
330/0.00299

500 / 0.00200
335 / 0.00298

In this report the Cascadia subduction zone is treated as a class A fault. We have assumed 
that large earthquakes occur every few hundred to 1000 years as inferred from 
paleoseismic information (e.g., McCrory, 1996; Frankel et al.,1996). The entire Cascadia 
subduction zone was modeled as a combination of a M 9 characteristic rapture along the 
entire subduction zone from California to Washington every 500 years and a M 8.3 
rupture along the California portion of the zone about every 335 years. The recurrence of 
the M 8.3 event reflects the time for the entire Cascadia to rupture all the segments in 500 
years (Frankel et al., 1996). We assign a one-third weight to the M 9 event and a two- 
thirds weight to the M 8.3 event.

For class B faults we have chosen to use both characteristic and exponential earthquake 
magnitude-frequency distributions with each weighted 50%. This composite model allows 
for a greater number of large earthquakes than predicted by a simple exponential 
distribution while still accounting for the smaller earthquakes that may occur on the fault. 
In addition, this model also accounts for the diversity of opinion regarding these 
distributions within the science and engineering communities. Blind thrusts were treated 
as B class faults for this analysis. Some of the blind thrusts and offshore faults in the Santa
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Barbara Channel were weighted (Appendix A) to account for alternative scientific models 
after the work of Treiman (1996, written communication) that accounts for rotation of the 
western Transverse Ranges and Foxall (1996, written communication). In the source 
model presented here, earthquakes on fault sources generally have a minimum magnitude 
of 6.5 and a maximum magnitude consistent with the fault rupture area or displacement 
per event (Wells and Coppersmith, 1994). The shorter faults that have calculated 
magnitude less than 6.5 are described by a characteristic earthquake magnitude rather than 
a Gutenberg-Richter magnitude-frequency distribution.

Maximum magnitudes are an important variable in calculating the seismic hazard because 
they determine how much strain is released in larger earthquakes. The displacements per 
event were generally obtained from the WGCEP (1988,1990,1995) and were used to 
calculate maximum magnitudes and average recurrence intervals for earthquakes on class 
A faults. For class B faults we use a historical earthquake magnitude on a particular fault, 
if available, or the relation of Wells and Coppersmith (1994) between area of the fault 
rupture and magnitude of the event to calculate the maximum magnitude (or characteristic 
earthquake magnitude):

M=a+ b x logio(rupture area) (4)

where a and b are constants of 4.07 and 0.98 and the standard deviation of the magnitude 
is 0.24. The length, dip, and the top and bottom of the rupture of the fault are used to 
calculate the rupture area.

In general, alternate segmentation models were not considered in this version of the map. 
However, multiple segment earthquake ruptures were considered for modeling 
earthquakes on many of the class A faults (Table 1). In addition, alternative weighted 
models were considered for the blind thrusts and other faults in the Los Angeles basin and 
Santa Barbara Channel. These weighted models account for the lack of consensus in the 
earth-science community regarding these structures and their activity rates. Future 
versions of the map will most likely include additional alternatives for models of rupture.

Modeling the sources for faults that have known creep is not straightforward because 
some of the strain along these faults may not be released in earthquakes. Future seismic 
hazard research should focus on better ways to model such faults (e.g., creeping section of 
the San Andreas Fault, the Hayward Fault, the Calaveras Fault, the Brawley seismic zone, 
and the Maacama Fault). For constructing the source model along the creeping section of 
the San Andreas Fault and the creeping section of the southern Calaveras Fault we have 
varied the general methodology for calculating hazard. We have not added a separate 
source to account for the seismicity along the creeping segment of the San Andreas Fault, 
although we tested the sensitivity of various source models to the hazard results. The 
historical seismicity along the creeping segment of the San Andreas alone is quite high and 
contributes to a significant hazard. We modeled the earthquakes along the southern 
Calaveras Fault by allowing a M 6.2 event to occur anywhere along the fault We
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constrained the maximum magnitude to 6.2 because several earthquakes about that size 
have occurred historically.

We modeled four aerial source zones along the eastern border of the state that extend 
from about Mammoth Lakes up into northeastern California and incorporate much of 
northeastern California and small portions of eastern Nevada and southern Oregon (Figure 
3). These zones account for faults with poorly constrained or unknown slip rates with 
multiple fault strands distributed over a wide area. These source zones are shown in 
Figure 3 and included in Table 1. The zones were modeled using linear sources, oriented 
along regional structural trends. They incorporate earthquakes modeled using an 
exponential magnitude-frequency distribution between M 6.5. and 7.3, except for the 
Foothills Fault System that incorporates exponentially distributed earthquakes between M 
6.0 and 7.0.

In addition to the characteristic and exponential distributions for fault sources, we also 
allow for background seismicity that accounts for random earthquakes between M 5 and 7 
based on the methodology described by Frankel et al. (1996). We note that an overlap 
occurs in our source model between M 6.5 and 7 because both the background as well as 
the fault magnitude distributions may contain that range of events. Frankel et al. (1996) 
and Cao et al. (1996), however, include sensitivity studies indicating that this overlap ' 
causes only small differences to the calculated hazard values. The inclusion of larger 
events in the background allows for sources such as the 1994 Northridge earthquake that 
occurred on a previously unknown fault. The background seismicity is based on the 
assumption and observation that large earthquakes occur where smaller earthquakes have 
occurred in the past. Therefore, the background seismicity is highest near locations of 
M>4 events and is based on the DMG California catalog of earthquakes (1800-1994; 
Petersen et al., written communication, 1996). The background hazard is based on the 
rate of M 4 events since 1933, M 5 events since 1900, and M 6 events since 1850. The 
seismicity is smoothed using a Gaussian operator with correlation distance of 50 km and 
then the smoothed seismicity value is summed at each grid point The a-values are 
calculated using the method described in Weichert (1980) for all grid points across 
California (Frankel, 1995, Frankel et al., 1996). The hazard may then be calculated using 
this a-value, a b-value of 0.9, minimum magnitude of 5, maximum magnitude of 7, and 
applying an exponential distribution as described by Hermann (1977).

c) Attenuation relations
Once the earthquake distributions have been calculated for all the faults, attenuation 
relations are applied to estimate the ground motion distribution for each earthquake of a 
given magnitude, distance, and rupture mechanism. We have chosen to use three 
attenuation relations for crustal faults and two relations for subduction zone events. The 
peak ground acceleration (pga) relations that we chose for crustal earthquakes are from: 
Boore et al. (1993, with revisions given in written communication 1995); Geomatrix- 
Sadigh equation found in Geomatrix (1995); and Campbell and Bozorgnia, (1994). The 
relations that we use for subduction earthquakes are: the Geomatrix-Youngs subduction 
zone interface earthquake relation and the Geomatrix-Sadigh equation both described in
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Geomatrix (1995). For all faults and background seismicity, except for the Cascadia 
subduction events, we apply Boore et al., Campbell and Bozorgnia, and Geometrix-Sadigh 
et al. weighted equally. For earthquakes along the Cascadia subduction zone we apply the 
Geomatrix- Youngs equation and the Geomatrix-Sadigh equation weighted equally for the 
M 8.3 event and apply only the Geomatrix-Youngs equation for the M 9 event because the 
Geomatrix-Sadigh equation does not apply for that size earthquake.

The Boore, Joyner and Fumal relation for random horizontal component of peak ground 
acceleration fpga) is given by:

logio fpga) = bi + b2(m-6) + b3(M-6)2 + b*r + b5 logior + b6Gb + b7Gc +. E (5)

with r=( d2 +h2 ) m and ologi0Y=0.226, olnY=0.520. In this equation bi(reverse)=- 
0.051, b!(strike-slip>=-0.136, bi(all)=-0.ia5, b2=0.229, b3=0, b4=0, b5=-0.778, b6=0.162, 
b7=0.251, Gb=0.5 Gc=0.5, and h=5.57, d is the closest distance to the surface projection of 
the rupture, e is the random uncertainty term, and M is moment magnitude. The firm-rock 
equation is used to assess ground motion for a soil condition near the boundary between 
soil types b and c. Therefore, we use the relation with Gb and Gc each 0.5 to account for 
this firm-rock condition.

The Geomatrix - Sadigh pga for strike slip style of faulting and for rock site conditions is 
given by:

for M * 6.5: In (pga) = -0.624 + l.OM -2.1 ln[R + exp(1.29649+ 0.250M)] (6) 
for M > 6.5: In (pga) = -1.274 + 1.1M -2.1 ln[R + exp(-0.48451 + 0.524M)]

with dispersion relation: o[ln (pga)] = 1.39 - 0.14M, or 0.38 for M * 7.25

These values are increased by 20% for reverse faults. M is moment magnitude and R is 
the closest distance to the source in km.
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The Campbell and Bozorgnia (geometric mean of two horizontal components of pga) is 
given by:

ln(pga) = -3.512 + 0.904M -1.328 In-jR* 2 +[0149exp(0.647Af)]2 + 
[1.125 - 0.112 ln(Rs) - 0.0957MJF + [0.440-0.171 ln(R, )]S8r + 
[0.405-0.222 ln(Rs)]Shr+e

with,
0.889-0.069 L/tf if M < 7.4 and 

= 0.38 if M * 7.4 (7)

where Rs is the closest distance to the seismogenic rupture, F is 1 for reverse, thrust and 
oblique faulting events and 0 for strike-slip and normal faulting events, M is moment 
magnitude, 8^=1 for firm-rock sites and zero otherwise, S^ = 1 for hard -rock sites and 
zero otherwise, and e is the random error term with zero mean and standard deviation
equal to CJincpga). The top of seismogenic rupture is assumed to be about 3 km depth.

The Geomatrix-Youngs equation for pga from slab interface earthquakes on the Cascadia 
subduction zone is based on a fault depth of 20 km and is given by:

ln(pga) = 0.3633 + 1.414M - 2.556(R+1.782ea554M) (8)

with standard deviation = 1.45 - 0.1M. M is moment magnitude and R is the closest 
distance to the source in kilometers. Standard deviation for magnitudes greater than M 8 
are set equal to the standard deviation for M 8.

In addition, deep events (depth > 35 km) in northwestern California were considered for 
this map, but they do not contribute significantly to the hazard probabilities because about 
25 or so M>4 events have been recorded in that region. Those deeper events mostly 
influence the hazard north of California and for further details see Frankel et al. (1996).

HAZARD MAP

The hazard map shown in Figure 5 depicts the peak horizontal ground acceleration 
exceeded at a 10% probability in 50 years on a uniform firm-rock site condition. 
Acceleration at 10% in 50 years ranges from about 0.1 g to over 1 g. This map indicates 
high hazard in a belt about 50 km on either side of the San Andreas Fault Zone and along 
the Eastern California Shear Zone (Figure 1). The hazard is also quite high over the 
western Transverse Ranges, although no large earthquakes are known to have occurred in 
this region during the historical record. The northwest coastal portion of the state reflects 
high hazard from potential earthquakes on several onshore faults and the Cascadia 
subduction zone. The hazard is lower in the Central Valley and many portions of 
northeastern and southeastern California. More than three-fourths of the population of the
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state resides in counties that have seismic hazard above about 0.4 g, including counties 
near the San Francisco Bay and greater Los Angeles regions. This value is a rough 
estimate based on overall state population of about 32 million and county population as 
defined by the Governor's Office of Planning and Research (1996).

COMPARISON WITH HISTORICAL DAMAGE

The area of California where ground shaking during historical earthquakes has exceeded 
Modified Mercalli Intensity (MMT) VII is shown in Figure 6, revised after the work of 
Toppozada et al. (1986) to include the 1992 Landers sequence, the 1987 Superstition Hills 
events and the 1994 Markleeville earthquake. MMI is a scale that measures the effects of 
earthquake ground motion on people and structures. MMI VII effects are characterized 
by significant damage to weak structures. Therefore, the map depicts all areas that either 
experienced damage or would have experienced damage to structures if the area had been 
developed at the time of the earthquake. The damage pattern extends about 50 km on 
either side of the San Andreas Fault Zone and extends up through the Eastern California 
Shear Zone. This pattern is very similar to the hazard "pattern shown in the hazard map of 
Figure 5. Differences between the historic damage and the map we produced can be 
observed near the Cascadia subduction zone and near the Transverse Ranges of southern 
California. In these areas, few large earthquakes have occurred historically but geologic 
and geodetic data indicate high strain rates.

COMPARISON WITH HISTORICAL SEISMICTTY

The seismic hazard was calculated by inferring a suite of representative earthquakes for 
each fault, calculating the ground motion from these events, and summing the hazard from 
all the earthquakes. An important constraint on the hazard model is a comparison of the 
model earthquakes with the historical rate of earthquakes. This comparison is shown in 
Figure 7. The hazard model matches very well from M 5 to M 6 and M 7 to M 8. 
However, there is an excess of events, on the order of a factor of 2, for M 6 to M 7 across 
the entire state. Overall the match between the model seismicity and the historical 
seismicity is fairly good. The mismatch between the historical and model seismicity 
indicates the discrepancy between the geologic fault information and the historic 
earthquake catalog. As mentioned earlier, the historic earthquake catalog covers only 
about 200 years, while recurrence of earthquakes on many faults are at least an order of 
magnitude longer. Therefore, we would not expect to have seen all the earthquakes 
during the past 200 years that would be expected in the future. We cannot say how much 
the rate of seismicity fluctuates over time scales of hundreds to thousands of years.

DEAGGREGATION OF THE HAZARD MODEL

We have deaggregated the hazard model to determine the size and distance of the 
earthquakes that contribute most to the hazard at specific sites throughout California. The 
deaggregation process compares the probabilities of exceeding a certain ground motion 
level from each event used in the model to determine the event(s) that contribute most to
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Figure 6. Areas that are thought to have experienced (or would have experienced if the 
area were developed) MMIVII or greater between 1800 and 1996. San Andreas and 
Eastern California Shear Zones are depicted. Boxes indicate epicenters of M>6 
earthquakes for which we do not have damage data.
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the hazard at each site. This should enable engineers, geologists, and public policy makers 
to identify the predominant hazardous earthquakes in any region and provide guidance in 
choosing strong motion records or scenario earthquakes in their design and planning.

The modal (most probable) magnitude for earthquakes that dominate the hazard is 
contoured and displayed in Figure 8. The map indicates hazard in the northwest from 
great earthquakes along the Cascadia subduction zone, the hazard near the San Andreas 
and the Central Valley from large earthquakes along the San Andreas Fault, and the 
hazard in the east San Francisco Bay area and greater Los Angeles region from moderate 
to large events along local faults. The modal distance map indicates the distance to the 
earthquake that contributes most to the hazard at each site. This map is shown in Figure 9 
and indicates that for most areas the fault that is nearest the site causes the highest hazard. 
For the Central Valley, few faults have been identified that contribute to the hazard and so 
the distances are considerably longer than for coastal areas and generally these longer 
distances correspond to the distance from the San Andreas Fault.

COMPARISON OF HAZARD ACROSS CALIFORNIA

The hazard map in Figure 5 indicates the hazard at a 0.0021 annual probability level. 
Figure 10 shows the hazard curves at six sites across the state and indicates the annual 
probability of exceeding a given level of ground motion at each site (the 0.0021 probability 
is represented by a single point on each of the curves). Probabilities of exceeding low 
ground motions less than 0.1 g are the highest and the probabilities of exceeding high 
ground motions near 1 g are generally 2 or 3 orders of magnitude lower. The hazard is 
quite high near San Bernardino because of proximity to two very active geologic 
structures, the San Andreas and San Jacinto faults. Eureka is located near several 
moderately active crustal faults (e.g., the Little Salmon, Mad River, Trinadad, and Fickle 
Hill faults) and directly over the Cascadia subduction zone that is thought to be capable of 
great (M 8 to 9) earthquakes. San Francisco is situated about 10 km from the segment of 
the San Andreas Fault that has slip rate about 17 - 24 mm/yr and about 20 km from the 
Hayward fault that has slip rate of about 9 mm/yr. These high slip rate faults combine to 
produce a significant seismic hazard in the San Francisco Bay area. Los Angeles is 
located near several faults and blind thrusts that have slip rates between 1 and 3 mm/yr 
and about 50 km from the section of the San Andreas Fault System that has a slip rate 
between 25 and 35 mm/yr. San Diego is located about 30 km from the offshore Coronado 
Bank Fault with slip rate of about 3 mm/yr and adjacent to the Rose Canyon Fault that is 
characterized by a slip rate of about 1.5 mm/yr. Therefore, the hazard levels at San Diego 
are somewhat lower than at the Los Angeles site. Sacramento has the lowest hazard 
levels of the cities shown (i.e., the probability of all levels of ground motions is lower than 
in many other regions of the state). Few known faults and low historical seismicity have 
been observed in this region. However, we cannot preclude the possibility that future 
earthquakes will occur in any of these areas of low hazard. In fact, the possibility of 
earthquakes up to M 7 have been included in the random background seismicity that is 
distributed everywhere across this map. Thus, the probability of exceeding large ground 
motions in Sacramento or any other site in California is never zero.
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CONCLUSIONS

The seismic hazard map and model presented in this report indicate that the hazard is high 
in many regions across the state, especially within about 50 km of the San Andreas fault 
system, the Eastern California Shear Zone faults, the western Transverse Ranges, and the 
Cascadia subduction zone. Earthquakes in populated regions have already caused 
considerable losses during the past 2 centuries that span California's recorded seismic 
history. The hazard map is consistent with this historical seismicity, the historical damage 
patterns, and with geologic information regarding the slip rate and pre-historic 
earthquakes.

This study indicates that about three-fourths of California's population resides in counties 
that have significant seismic hazard. This level of hazard reaffirms the need to examine 
existing infrastructure and verify that it is adequate to withstand the expected seismic 
shaking to prevent loss of life from structural collapse during an earthquake. The seismic 
hazard maps and models presented in this report2 should be useful for assisting policy 
makers, engineers, and scientists to plan for strong earthquake ground shaking.
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